MEB Science Day 2020, Utrecht 13 February

Advanced *in vitro* models for drug development: the complexity of simplicity

Roos Masereeuw, div. Pharmacology, Dept. Pharmaceutical Sciences, UU, NL

Utrecht Institute for Pharmaceutical Sciences

Research at experimental pharmacology

• Tools for novel therapeutic strategies to increase organ function during disease

 Gain insight in processes that determine renal excretion of metabolic wastes and drugs to develop interventions at end stage kidney disease

The kidney and its functions

Renal drug handling: translational challenges

Universiteit Utrecht

Artwork 'Youngman' by Tim Noble and Sue Webster, 2012

Humans are animals, but are animals human enough?

 Allometric scaling is suitable for prediction of human renal drug clearance (CLr)

 The average CLr of a diverse set of 20 drugs scales to the 3/4 power of body mass

Humans are animals, but are animals human enough?

Universiteit

Log BW (kg)

Humans are animals, but are animals human enough?

- Rat models should be used with caution for drug disposition studies
- Meta-analyses of (pre)clinical data can reduce PK animal experiments

Renal drug handling: predictional challenges

 Increasing complexity reduces reproducibility and through-put analysis

• Increasing complexity increases predictivity and physiological relevance, but also costs and manipulation

Faria, J., Ahmed, S. et al. Arch. Toxicol. 2019

Advanced in vitro models: bioengineered kidney tubules

Bioengineering kidney tubules

Conditionally Immortalized Proximal Tubular Epithelial Cell (ciPTEC)

Immortalization:

1. SV40T tsA58 U19

2. hTERT

Wilmer et al. Cell Tissue Research 2010

Bioengineering kidney tubules: membranes

Collagen IV NC1 hexan 7S domain

Coated membrane

Uncoated membrane

Schophuizen, et Wi, etctra, Brionnaateriaailas, 2015

L-Dopa

Bioengineering kidney tubules

Bioengineered kidney tubules

Functional imaging of bioengineered kidney tubules

Functional imaging of bioengineered kidney tubules

Bioengineered kidney tubules in microfluidics

Meijers & Evenepoel, NDT. 2011; Dou & Burtey, Kidney Int. 2016

Albumin supports renal secretion of drugs and metabolic wastes

Van der Made, T., et al. Mol. Pharm. 2019

Bioengineered intestinal tubules

Bioengineered intestinal tubules

ZO-1 (red) Tight junctions

Mucin-2 (green) Goblet cells

Differentiation

Lysozyme (red) Paneth Cells

> LGR-5 (green) Stem cells

Bioengineered intestinal tubules

Inulin-FITC leakage

- Bioengineereed kidney proximal tubules recapitulate key epithelial features, suitable for renal physiology, pharmacology and quantitative assessment of tubular transport and mechanistic studies
- Similar approaches are used for **intestinal**, bile duct and liver tissue

Utrecht-Advanced *In Vitro* **Models** Hub

Utrecht-Advanced In Vitro Models Hub

- Many new, innovative *in vitro* models have significant potential to better predict human or animal physiology thereby replacing animal experimentation, but...
- development often stops after establishment due to:
 - lack of interest for implementation
 - lack of knowledge on validation
 - lack of funding

Utrecht-Advanced In Vitro Models Hub

- Aims to be a **leading centre of expertise** on development of *in vitro* models for diagnostics, models of disease, models for compound screening (chemical, pharmaceutical, food) and safety testing.
- Is a **one-stop shop** where high potential *in vitro* models are being developed, validated and transferred to industries and regulatory bodies.
- Facilitates multidisciplinary collaborations between academia, research institutes and industry, health care foundations and regulators.

Creating a center of expertise in Utrecht (U-AIM) for validation and valorization of advanced *in vitro* models with a strong focus on alternatives for animal experimentation is thus a timely investment.

Acknowledgements

UIPS Utrecht Institute for Pharmaceutical Sciences

Div. Pharmacology

Jitske Jansen Manoe Janssen **Milos Mihajlovic** Michele Fedecostante Katja Jansen Paul Jochems **Carla Pou Casellas** Silvia Mihaila Anne Metje van Genderen **Koen Westphal**

Joachim Jankowski Vera Jankowski

Universiteit Utrecht

Nephrology & Hypertension

Marianne Verhaar Karin Gerritsen Maarten Rookmaaker

Biofabrication Utrecht

Jos Malda **Miguel Dias Castilho** Yang Li

UNIVERSITY OF TWENTE.

Biomaterials Science and

Technology (BST) **Dimitrios Stamatialis** Natalia Chevtchik

Radboudumc

Dept. Pharmacology and Toxicology

Martijn Wilmer Tom Nieskens Janny Peters Jelle Vriend Frans Russel **Dept. Physiology Joost Hoenderop Dept. Pediatrics**

Bert van den Heuvel **Carolien Schophuizen**

Dept. Nephrology Luuk Hilbrands

Acknowledgements

